Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology
Department of Electronics and Communication Engineering

BEC604 COMMUNICATION ENGINEERING - II

Sixth Semester, 2016-17 (Even Semester)

Course (catalog) description

The course considers basic concepts of sampling, quantization and coding that are fundamental to digital transmission of analog signals. This course deals with the concepts of analog pulse modulation techniques .The course provides Comprehensive coverage of baseband transmission of binary data and types of digital modulation (ASK, FSK, and PSK) from both a mathematical description and from a block-diagram system approach. The course implement the concept of spread spectrum communication system.

Compulsory/Elective course: Compulsory for ECE students

Credit hours : 3 credits

Course Coordinator : . **Ms.S.Arulselvi**, Asst.Professor, Department of ECE

Instructors :

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Ms.S.Arulselvi	III ECE	SA019		Arulselvi.ece	9.00-9.50 AM
Ms.S.Philomina	III ECE	SA020		Philomina.ece	12.45-1.15 PM

Relationship to other courses:

Pre –requisites : BEC604 Communication Engineering –I,

Assumed knowledge : The students will have knowledge on Analog Communication.

Following courses : BEC703 Cellular Mobile Communication, BEC016 Cognitive Radio

Syllabus Contents

UNIT I SAMPLING AND QUANTIZATION

9 HOURS

Sampling Process – Aliasing – Instantaneous sampling – Natural Sampling –Flat Sampling – Quantization of signals – sampling and quantizing effects –channel effects – SNR for quantization pulses – data formatting techniques –Time division multiplexing.

UNIT II DIGITAL MODULATION

9 HOURS

PCM Systems – Noise Considerations in PCM system – Overall Signal-tonoise ratio for PCM system – Threshold effect – Channel Capacity – Virtues, Limitations & Modification of PCM system – PCM Signal Multiplexing – Differential PCM – Delta Modulation – Noise Considerations in Delta Modulation – SNR Calculations – Comparison of PCM, DPCM & DM.

UNIT III BASEBAND PULSE TRANSMISSION

9 HOURS

Maximum likelihood receiver structure – Matched filter receiver – Probability error of the Matched filter – Intersymbol interference – Nyquist criterion for distortionless baseband transmission – Correlative coding – Eye pattern.

UNIT IV PASS BAND DATA TRANSMISSION

9 HOURS

Pass Band Transmission Model – Generation, Detection, Signal Space Diagram, Probability of Error for BFSK, BPSK, QPSK, DPSK, and Schemes – Comparison.

UNIT V UNIT 5 M-ARY SIGNALLING AND INTRODUCTION TO SPREAD SPECTRUM TECHNIQUES

9 HOURS

M-ary signaling, vectoral view of MPSK and MFSK signaling, symbol error performance of M-ary systems –Introduction – Discrete Sequence Spread Spectrum technique – Use of Spread Spectrum with CDMA-Ranging Using Discrete Sequence Spread Spectrum – Frequency Hopping Spread Spectrum –Generation & Characteristics of PN Sequence.

TOTAL 45 HOURS

Text book(s) and/or required materials

- T1. Bernard Sklar, "Digital Communication, Fundamentals and Application", Pearson Education Asia, 2nd Edition, 2001.
- T2. Simon Haykin, "Communication Systems", John Wiley & Sons, 4th Edition, 2000
- T3. Taub & Schilling, "Principle of Communication Systems", 2nd Edition, 2003

Reference Books:

R1. John G. Proakis, "Digital Communication", McGraw Hill Inc, 5th Edition, 2008. R2. Dennis Reddy & R2.Singh, R.P. & Sapre, S.D, "Communication Systems: Analog & Digital", Tata McGraw-Hill, 5th reprint. www.scribd.com

Computer usage: MatLab

Professional component

General - 0%
Basic Sciences - 0%
Engineering sciences & Technical arts - 0%
Professional subject - 100%

Broad area: Circuit Theory | Electronics | Signal Processing | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	Feb 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 3 rd Week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of circuit theory through the application of techniques and principles of electrical circuit analysis to common circuit problems. This course emphasizes:		Correlates to program outcome	
етірпазігез.	Н	M	L
1.Students will learn about the basic concepts of Sampling, basic concepts of baseband transmission of binary data	a,g,i	b,d,f	
2. They gain knowledge about basics of digital modulation techniques.	c,i	a,b,e,f,g,k	
3. They can understand the concepts of spread spectrum digital communication system	d,i	Α	
4.To provide in-depth analysis of noise performance in various receivers	i	a,b,e,g	
5.Design basic communication systems	С	e,k	b
6.To understand the basic concepts of analog pulse modulation techniques		a,b,d	f,k

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I	SAMPLING AND QUANTIZATION		
1.	Sampling Process	No	
2.	Aliasing	No	
3.	Instantaneous sampling – Natural Sampling	No	
4.	Flat Sampling	No	
5.	Quantization of signals	No	
6.	sampling and quantizing effects –channel effects	No	[T1] Chapter -2
7.	SNR for quantization pulses	No	
8.	Data formatting techniques	No	
9.	Time division multiplexing	Yes	
UNIT II D	DIGITAL MODULATION		·
10.	PCM Systems	Yes	
11.	Noise Considerations in PCM system	Yes	
12.	Overall Signal-tonoise ratio for PCM system	Yes	
13.	PCM-Threshold effect	Yes	
14.	Channel Capacity ,Virtues,Limitations & Modification of PCM system	No	[T2] Chapter -3
15.	PCM Signal Multiplexing – Differential PCM	Yes	
16.	Delta Modulation	Yes	
17.	Noise Considerations in Delta Modulation SNR Calculations	Yes	
18.	Comparison of PCM, DPCM & DM.	Yes	
UNIT III B	BASE BAND PULSE TRANSMISSION	1	
19.	Maximum likelihood receiver structure	No	
20.	Matched filter receiver	No	
21.	Probability error of the Matched filter	No	
22.	Intersymbol interference	No	
23.	Nyquist criterion for distortionless baseband transmission	No	[T2] Chapter -4
24.	Correlative coding	No	[R1]Chapter-5
25.	Duobinary Encoder with Precoder	Yes	
	Page		

26.	Modified Duobinary Encoder with Precoder	Yes	
27.	Eye Pattern	No	
UNIT IV PA	ASS BAND DATA TRANSMISSION		
28.	Pass Band Transmission Model	No	
29.	Generation, Detection of BFSK	No	
30.	Signal Space Diagram, Probability of Error for	No	
	BFSK		
31.	Generation, Detection of BPSK	No	[T2] Chapter -6
32.	Signal Space Diagram, Probability of Error for	Yes	[R1]Chapter-5
	BPSK		
33.	Generation, Detection of QPSK	No	
34.	Signal Space Diagram, Probability of Error for QPSK	Yes	
35.	Generation, Detection of DPSK	No	
36.	Signal Space Diagram, Probability of Error for DPSK,Comparison	Yes	
UNIT V M-	ARY SIGNALING AND INTRODUCTION TO SPREAD SPECT	TDI IM TECHNIQUES	
37.	M-ary signaling.	No	
37.	ivi ary signamig.	140	
38.	Vectoral view of MPSK and MFSK signaling	No	
39.	Symbol error performance of M-ary systems	No	
40.	Introduction -Discrete Sequence Spread	No	[T2] Chapter -7 [R1] Chapter-13
	Spectrum technique		[K1] Gliapter-13
41.	Use of Spread Spectrum with CDMA	No	
42.	Ranging Using Discrete Sequence Spread	No	
	Spectrum		
43.	Frequency Hopping Spread Spectrum – Generation	No	
44.	Performance of Spread Spectrum Techniques	No	
45.	Characteristics of PN Sequence	Yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	10%
Cycle Test – II	-	10%
Model Test	-	25%
Attendance	-	5%
Final exam	-	50%

Prepared by : S.Arulselvi	Assistant professor, Department of ECE	Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) an ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) an ability to identify, formulate, and solve engineering problems
- c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d)an ability to design and conduct experiments, as well as to analyze and interpret data
- e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f)an ability to apply reasoning informed by a knowledge of contemporary issues
- g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices
- i) an ability to function on multidisciplinary teams
- j) an ability to communicate effectively with the engineering community and with society at large
- k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through self-directed professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature	
Ms. S.Arulselvi		
Ms.S.Philomina		

Course Coordinator	Academic Coordinator	Professor In-Charge	HOD/ECE
(Ms.S.Arulselvi)	()	(Dr.)	(Dr.M.Sundararajan)